Методические элементы введения комбинаторики

Страница 2

Рисунок 6

Известно, что составлением магических квадратов увлекались в Древнем Китае несколько тысяч лет назад.

Магического квадрата размером 2 x 2 не существует. Существует единственный магический квадрат размером 3 x 3, внешне отличные от него варианты можно получить либо зеркальным отображением чисел относительно осей симметрии рассмотренного квадрата (их у квадрата 4, см. рис.7), либо поворотом на 900 вокруг центра квадрата (рис.8).

Рисунок 7 Рисунок 8

Пример 5. Составьте магический квадрат, полученный из квадрата, изображенного на рис.6:

зеркальным отображением клеток от горизонтальной оси симметрии квадрата;

поворотом клеток квадрата на 900 вокруг его центра против часовой стрелки.

С увеличением количества клеток, на которые разбит квадрат, увеличивается число возможных магических квадратов.

Например, число всевозможных магических квадратов размером 4 x 4 (с записью в его клетках чисел от 1 до 16 по оговоренным правилам) уже 880, а число магических квадратов размером 5 x 5 более 200 000.

Пример магического квадрата размером 4 x 4 приведен на рис.9.

16

3

2

13

5

10

11

8

9

6

7

12

4

15

14

1

Рисунок 9

Латинские квадраты

Латинскими называют квадраты размером n x n клеток, в которых записаны натуральные числа от 1 до n, причем таким образом, что в каждой строке и каждом столбце встречаются все эти числа по одному разу. На рис.10 приведен пример латинского квадрата размером 3 x 3.

1

2

3

2

3

1

3

1

2

Рисунок 10

На рис.11, а изображены два латинских квадрата размером 4 x 4, которые имеют такую особенность: если один квадрат наложить на другой (например, второй квадрат считать сделанным из прозрачной бумаги и положить его на первый), то все пары образовавшихся двухзначных чисел (рис.11, б), будут различными. Такие пары латинских квадратов называют ортогональными.

1

2

3

4

2

1

4

3

3

4

1

2

4

3

2

1

Страницы: 1 2 3 4 5 6 7


Новое в образовании:

Социально-психологические особенности детей
Соотношение внешних социальных условий и внутренних условий созревания высших психических функций определяет общее движение развития. Поэтому постараемся рассмотреть социально-психологические особенности детей разных возрастных периодов: 1) 3 – 6 (7) лет: дошкольный возраст. Кризис 3 лет (кризис со ...

Социально-педагогическая работа с детьми-сиротами
Социальная адаптация представляет собой один из механизмов позволяющих личности активно включаться в различные структурные элементы среды, т.е. посильно участвовать в труде и общественной жизни коллектива, приобщаться к социальной культурной жизни общества, устраивать свой быт в соответствии с норм ...

Изучение представлений у детей об эмоционально значимых сторонах жизни школы
Наиболее эмоционально значимыми для учащихся 1-го класса являются отношения с учителем (63,6%) и отметка (45,5%), то есть настроение ребенка зависит от того, каким образом складываются взаимоотношения между учителем и учащимся, какую отметку ему поставят в школе. Менее значимыми в эмоциональном пла ...

Меню сайта

Copyright © 2019 - All Rights Reserved - www.powereducator.ru