Методические элементы введения комбинаторики

Страница 10

7. На стол бросают 2 игральных тетраэдра (серый и белый), на гранях каждого из которых точками обозначены числа от 1 до 4. Сколько различных пар чисел может появиться на гранях этих тетраэдров, соприкасающихся с поверхностью стола?

8. В киоске продается пять видов мороженого (не менее двух брикетов каждого вида). Оля и Таня хотят купить по одному брикету. Сколько существует вариантов такой покупки?

9. Мама решила сварить компот из фруктов двух различных видов. Сколькими способами мама может это сделать, если у нее имеется 7 видов фруктов?

10. Из коробки, содержащей 8 мелков различных цветов, Гена и Таня берут по одному мелку. Сколько существует вариантов такого выбора?

11. Сколько существует различных двузначных чисел, в записи которых используются цифры 1, 2, 3, 4, 5, 6, если:

1) цифры в числе могут повторяться;

2) цифры в числе должны быть различны.

12. Сколько существует различных двузначных чисел, в записи которых используются цифры 0, 1, 2, 3, 4, 5, если:

1) цифры в числе могут повторяться;

2) цифры в числе должны быть различны.

Перестановки

Пример 16. Семиклассники Анна, Борис, Виктор и Галина побежали на перемене к теннисному столу, за которым уже шла игра. Сколькими способами подбежавшие к столу семиклассники могут занять очередь для игры в настольный теннис?

Решение. Первым (I) в очереди мог стать любой из четырех семиклассников, вторым (II) - любой из оставшихся трех, третьим (III) - любой из оставшихся двух и четвертым (IV) - семиклассник, подбежавший последним. По правилу произведения у четверых ребят существует =24 способа занять очередь. Рис.17 иллюстрирует решение с помощью дерева вариантов.

Ответ: 24 способа.

В примере 16 были подсчитаны всевозможные комбинации из четырех элементов, отличающиеся друг от друга только порядком расположения в них элементов. Такие комбинации называются перестановками из четырех элементов.

Комбинации из n элементов, отличающиеся друг от друга только порядком расположения в них элементов, называются перестановками из n элементов. Число всевозможных перестановок из n элементов обозначают Pn (P - первая буква французского слова permutation - перестановка). Читается: ”Число перестановок из эн элементов" или ”Пэ из эн”. В примере 16 было показано, что P4 = 4·3·2·1. Пользуясь переместительным законом умножения, можно записать P4 = 1·2·3·4. С помощью правила произведения можно обосновать, что

.

После применения переместительного закона умножения эту формулу можно переписать в виде

(2.5).

Таким образом, число перестановок из n элементов равно произведению всех натуральных чисел от 1 до n.

Пример 17. Сколько различных пятизначных чисел, все цифры которых различны, можно записать с помощью цифр 4, 5, 6, 7 и 8? Решение. Задача сводится к подсчету чисел перестановок из пяти элементов.

.

Ответ: 120 различных чисел.

Для сокращения записи произведения первых n натуральных чисел в математике используется символ n! (читается как ”Эн факториал”), т.е.

,

и формула (2.5) приобретает вид

(2.6).

Пример 18. Сколькими способами можно расставить на полке 8 книг, если среди них 2 книги одного автора, которые при любых перестановках должны стоять рядом?

Решение. Первоначально будем считать 2 книги одного автора единой книгой. Тогда количество способов расстановки условных семи книг на полке будет равно числу перестановок из 7 элементов:

.

Страницы: 5 6 7 8 9 10 11 12


Новое в образовании:

Концептуальные основы формирования компетенций и становления технологической компетентности
В структуре каждой профессиональной компетенции учителя мы выделили четыре компонента: информационную основу (теорию); ориентировочную основу (знание о том, из чего исходить и что, как и когда делать); исполнительную основу (отработку непосредственного выполнения действия); контролирующую основу. П ...

Методика диагностики звукопроизношения у детей со стертой дизартрией по Е. Ф. Архиповой
Выше нами были рассмотрены методики диагностики звукопроизношения детей со стертой дизартрией различных авторов. Теперь рассмотрим более подробно методику, Е. Ф. Архиповой, которая предлагает следующую схему обследования: 1) изолированное произнесение; 2) в слогах разной структуры (8 модулей); 3) в ...

Изучение представлений у детей об эмоционально значимых сторонах жизни школы
Детям предлагают придумать завершение рассказа: «Петя пришел из школы грустный. Мама его спросила: «Почему ты такой грустный?» А Петя отвечает: «Потому что наша учительница Нина Петровна… «Что дальше сказал Петя?» Предлагается такая ситуация с веселым мальчиком, вернувшимся из школы. Ответы детей р ...

Меню сайта

Copyright © 2020 - All Rights Reserved - www.powereducator.ru