Особенность этой игры – эстафетный характер заданий, когда от вклада каждого, от четкости взаимодействия зависит общий результат.
Задачи:
1. Формирование дружного коллектива.
2. Развитие навыков взаимодействия
3. Развитие логического мышления и воображения, проверка элементарных математических навыков.
Ход соревнования:
Здравствуйте, ребята. Сегодня у нас с вами – соревнование. Соревноваться будем под девизом: Если вместе, если дружно». Для этого разделимся на две команды. Так как соревноваться будем в области математики, то обе команды будут носить имена великих математиков прошлого: «Пифагорики» и «Архимедики» (выдаются эмблемы).
Соревнования будут эстафетными, поэтому будьте готовы проявить взаимопомощь и взаимовыручку.
Эстафета 1. Очень длинный пример
На планшете написаны примеры. Каждый участник командыподбегает, решает один пример и передает эстафету следующему. Кто быстро и правильно решит весь пример?
Эстафета 2. Собери робота
Участники команд берут из корзинок геометрические фигуры: круги, треугольники, квадраты, многоугольники и т.д. и крепят их на доске так, чтобы получился робот. У кого получится лучше?
Эстафета 3. Каждому по примеру
Количество математических примеров на доске соответствует числу участников команды. Участники команд по очереди подбегают к доске и решают по одному примеру (на выбор), побеждает команда, которая быстрее и без ошибок решит все примеры.
Эстафета 4. Без права на ошибку
Команда выстраивается в шеренгу, у каждого в руках листок и ручка. Ведущий читает задачу:
1. Всадник без головы проезжает 72 км за 6 часов. Сколько часов понадобится ему, чтобы преодолеть 54 км, если он будет двигаться пешком с вдвое меньшей скоростью?
2. Два мальчика побежали навстречу друг другу по спортивной дорожке, длина которой - 100 м, а ширина - 60 см. Один мальчик бежал со скоростью 5 м/с, и второй бежал со скоростью 5 м/с. Через сколько секунд они столкнулись лбами?
Каждый участник пишет ответ на листочке и показывает жюри, которое отмечает количество правильных и неправильных ответов. Ответ, не поднятый до сигнала ведущего, считается неправильным.
Затем выстраивается другая команда и решает задачи:
1. С одного дерева сняли 164 груши, а со второго - 5 мальчиков, каждый из которых, сидя на дереве, съел по 27 груш. После этого со второго дерева сняли еще 94 груши. Сколько груш было на обоих деревьях?
2. От морского вокзала в 14 часов отошли одновременно в противоположных направлениях теплоход и пешеход. Теплоход двигался со скоростью 40 км/ч, а пешеход - со скоростью 10 км/ч. Если через 2 часа пешеход повернется и сначала побежит со скоростью 20 км/ч, а потом поплывет со скоростью 160 км/ч, то догонит ли пешеход пароход к 19 часам?
Побеждает команда, давшая большее количество правильных ответов.
Эстафета 5. Математическая сказка
Все участники команды, говоря по предложению, продолжают сказку, которую начинает ведущий.
Первая команда. Однажды в Математическом королевстве случилась беда…
Вторая команда. У Пятерки был день рождения, и она пригласила на него своих друзей…
Итог урока.
Итак, подведем итоги. Какая команда была самая дружная, кому удалось лучше справиться с трудными математическими заданиями?
А еще очень важно, - вы поняли: если вместе взяться за дело, то самые трудные примеры решить легко.
Технология организации всех соревнований базируется на методике и технологии коллективной творческой деятельности, разработанной И.П. Ивановым. В ее основе – активное участие детей во всех этапах и элементах соревнования: от замысла до анализа результатов.
Новое в образовании:
Мероприятия по улучшению условий труда
Для поддержания высокого уровня работоспособности на протяжении рабочего дня необходимо делать три кратковременных перерыва на отдых общей продолжительностью для первой смены 20 мин и для второй – 25 мин. Для подростков должно быть четыре регламентированных перерыва (всего 30 мин). Во время перерыв ...
Влияние изобразительной деятельности на развитие творческого воображения
детей дошкольного возраста
Вот уже почти столетие детское рисование вызывает интерес многочисленных исследователей. Представители различных наук подходят к изучению детского рисунка с разных сторон. Искусствоведы стремятся заглянуть в истоки творчества. Психологи через детское рисование ищут возможность проникнуть в своеобра ...
Применение оборудования в соответствии с санитарными требованиями
Все учебное и производственное оборудование в учебных заведениях устанавливается и закрепляется на фундаментах и основаниях согласно техническим условиям и паспортным данным с соблюдением нормируемых проездов, проходов и зон обслуживания. Допуская не закреплять оборудование устойчивое, которое в пр ...